SECOND

Define quality gates
and integrate static
code analysis tools
into your build chain

3 weeks to start AppSec - The simplest plan for
Improving your security posture

04 January 2021, 01:00

Nick Boucart
Tatiana Galibus

'Shift security left' is a popular IT industry paradigm which is very easy to understand but not so
obvious to implement. Adopting this statement requires more than just use of technology: itis a
shift in culture, integrated approach to application security and continuous learning process. Most
start-ups are eager to adopt it in theory, but discover obstacles when applying it in practice.

Perhaps, the existing strategies are tailor-made for companies with a defined security posture, but
there are no common guidelines on how to start application security, especially if a start-up has
limited resources and expertise. What are the basic actions to take, in order to have a clean
security maturity improvement plan and be ready to answer the customers' questions on trust and
security?

Being driven by the passion to find a pragmatic solution for start-ups that really works, we spent
almost three months on research and brainstorming at Sirris. Here is a result: the simplest 3-week
plan for improving security posture. It is inspired by DevSecOps philosophy and OWASP
standards.


https://www.sirris.be/
https://www.sirris.be/en/inspiration/3-weeks-start-appsec-simplest-plan-improving-your-security-posture
https://www.sirris.be/en/inspiration/3-weeks-start-appsec-simplest-plan-improving-your-security-posture

- sirris

In a previous article we explained the first week's actions. So now, what should be done on a
second week of the simplest security improvement plan?

Second week: define quality gates and integrate static code analysis tools into
your build chain

Second week in practice is dedicated to your first steps towards the security automation. There are
hundreds of open-source and commercial tools for the application/website security analysis.
Among those, the tools analysing the code and its dependencies, not the running application, are
referred to as Static Application Security Testing (SAST) tools. There are several categories of
such tools:

1. Code scanners

Scanners verify your code against built-in coding rules and notify you about the code quality issues
or security vulnerabilities. These tools may have thousands of rules for each programming
language and different scanning algorithms. Some of them are security-oriented, i.e. provide deep
analysis of security vulnerabilities. Others are code-quality-oriented and notify you of possible
coding problems or inaccuracies. We recommend you to start from one of these:

SonarScanner Scans for both security and code quality issues. |
both open-source and commercial version and c:
integrated as a plug-in into your development
environment, which makes it easy to use.

Fortify Security-oriented open-source tool. It is easily int
into the development environment and CI/CD pip

2. Software Composition Analysis tools (SCA)



SCA tools scan code dependencies and 3rd-party components for security bugs and vulnerabilities.
Indeed, even if your code fits the security requirements, a call to insecure functions, such as Java
Random.NextlInt() can be a source of vulnerability. Using secure APIs and libraries is something we
may often overlook. We recommend the following dependency scan tools:

OWASP DependencyCheck Scans for insecure dependencies, integrated with SonarQube

Fortify Scans for insecure dependencies and libraries, a Fortify code
scan plug-in

Retire.js Checks the use of insecure libraries and components in Java

Bundler-audit Checks for vulnerable versions of Ruby components

Gemnasium/GitLab security scan Monitors component versions in different programming
language and notifies about the changes. Currently, this tool is
integrated into GitLab CI/CD automation pipeline.

3. Secret detection tools

Often, developers unintentionally commit secrets, API tokens and credentials to the remote
repositories. In this case, the sensitive information easily becomes exposed and can be used by
adversaries to steal the identity and get unauthorised access to specific resources. Secret
detection tools scan the code and detect the presence of keys, tokens and credentials. We
recommend the following tools (most are integrated into the corresponding CI/CD environment):

GitGuardian Automatically integrated into GitLab repository
environment

GittyLeaks Automatically integrated into GitHub repository
environment

Git-secrets Prevents developer from committing secrets to C
repository
Truffle Hog This tool scans repository including all its branch

sensitive information

4. Build verification tools (BVT) and container analysis tools

BVT or smoke tests reveal simple failures that are severe enough to reject a software release.
Docker container scan tools are crucial to know what libraries might be vulnerable in your


https://owasp.org/www-community/vulnerabilities/Insecure_Randomness
https://owasp.org/www-community/vulnerabilities/Insecure_Randomness
https://docs.gitlab.com/ee/user/project/import/gemnasium.html
https://docs.gitlab.com/ee/user/project/import/gemnasium.html

container. These tools detect the insecurities and bugs in Docker images before the code is
deployed. We recommend the following tools for smoke tests and container scanning:

Clair-scanner Container scan tool integrated with GitLab CI/CD
pipeline
Trivy Container vulnerability scanner, detecting problel

OS packages and application dependencies

Twistlock Provides full-cycle container security, integrated:
cloud-based vulnerability management system

5. Vulnerability managers

Vulnerability management is an essential part of continuous integration, as in simplifies the
continuous monitoring, identifying, and preventing risks to the code, dependencies, containers,
images, and hosts in their environment. Often, SAST tools are integrated with vulnerability
managers, helping to have deep insights into the security issues. We recommend the following
vulnerability managers:

SonarQube server Displays all detected issues classified by severity
type in a project dashboard. Allows to track, visu
analyse the vulnerabilities

DefectDojo A vulnerability management platform allowing to
integrate and orchestrate the output of multiple s
scanners

Tenable.io Vulnerability management tool integrated with Gi

Provides automatic dashboard and security bugs

One of the key strengths of SAST tools is the broad coverage of programming languages and
development platforms. They are relatively easy to adopt and integrate. In spite of a high number of
false positives, SAST tools allow to identify nearly 50 per cent of bugs and are specifically efficient
for improving code quality and detecting recurring security issues.

SAST tools are the foundation of application security pipeline. AppSec pipeline is a chain of
essential security tools integrated in all stages of DevSecOps software development life cycle.
SAST tools provide continuous security at the stages of design, code, build and validate.



o Fosaneed | Pigaling ETH045448 igeeed 3 wooes age by 5 Tatsns Salibe

@ Update .gitlab=-ci.yml
o

@ Wiohs lon sasier i 14 mires bed § setoncs (Guesed ol 2 scends)
n

r B
- - BcicPile
L I Mo reisiad morge imguests fomnd
=]

Plgalies Maeds Jbc W Fosed Jots T Tetls @ Semedy Do Cusls

[=]
s Tasd Bal
o ':-__:; ALl o l"'r'j dast o
a St
[ 2

L)} ot sos..
o

"E:l v Lgar %]

I:E:_'l levily-sasl-bodd

-3 sode-asan-t 0}
» () mwtenje-sape..

Example of GitLab pipeline, SAST tools and testing stage

Curious to know more about this and other steps ? Do you have any other practical question on
application security? Reach out to us on security@sirris.be.

Boost uw innovatiel Gebruik onze axpertise in
digitalisering, duurzaamhoid of industrie 4.0

#ndustrie partnerschap

ol L] I »
i, S AGORIA ~ sirris o

1>

Authors

’ Nick Boucart


mailto:security@sirris.be

Tatiana Galibus

A



